Sunday, 7 June 2009

Top-down versus bottom-up design methodologies Neeraj-Nathani SmartBridge



Top-down versus bottom-up design methodologies

 











 


Bottom-up design

Ralph Kimball, a well-known author on data warehousing,[8] is a proponent of an approach to data warehouse design which he describes as bottom-up.[9]
In the bottom-up approach, data marts are first created to provide reporting and analytical capabilities for specific business processes. It is important to note that in Kimball methodology, the bottom-up process is the result of an initial business-oriented top-down analysis of the relevant business processes to be modelled.
Data marts contain, primarily, dimensions and facts. Facts can contain either atomic data and, if necessary, summarized data. The single data mart often models a specific business area such as "Sales" or "Production." These data marts can eventually be integrated to create a comprehensive data warehouse. The integration of data marts is managed through the implementation of what Kimball calls "a data warehouse bus architecture".[10] The data warehouse bus architecture is primarily an implementation of "the bus", a collection of conformed dimensions and conformed facts, which are dimensions that are shared (in a specific way) between facts in two or more data marts.
The integration of the data marts in the data warehouse is centered on the conformed dimensions (residing in "the bus") that define the possible integration "points" between data marts. The actual integration of two or more data marts is then done by a process known as "Drill across". A drill-across works by grouping (summarizing) the data along the keys of the (shared) conformed dimensions of each fact participating in the "drill across" followed by a join on the keys of these grouped (summarized) facts.
Maintaining tight management over the data warehouse bus architecture is fundamental to maintaining the integrity of the data warehouse. The most important management task is making sure dimensions among data marts are consistent. In Kimball's words, this means that the dimensions "conform".
Some consider it an advantage of the Kimball method, that the data warehouse ends up being "segmented" into a number of logically self-contained (up to and including The Bus) and consistent data marts, rather than a big and often complex centralized model. Business value can be returned as quickly as the first data marts can be created, and the method gives itself well to an exploratory and iterative approach to building data warehouses. For example, the data warehousing effort might start in the "Sales" department, by building a Sales-data mart. Upon completion of the Sales-data mart, the business might then decide to expand the warehousing activities into the, say, "Production department" resulting in a Production data mart. The requirement for the Sales data mart and the Production data mart to be integrable, is that they share the same "Bus", that will be, that the data warehousing team has made the effort to identify and implement the conformed dimensions in the bus, and that the individual data marts links that information from the bus. Note that this does not require 100% awareness from the onset of the data warehousing effort, no master plan is required upfront. The Sales-data mart is good as it is (assuming that the bus is complete) and the Production-data mart can be constructed virtually independent of the Sales-data mart (but not independent of the Bus).
If integration via the bus is achieved, the data warehouse, through its two data marts, will not only be able to deliver the specific information that the individual data marts are designed to do, in this example either "Sales" or "Production" information, but can deliver integrated Sales-Production information, which, often, is of critical business value.

Top-down design

Bill Inmon, one of the first authors on the subject of data warehousing, has defined a data warehouse as a centralized repository for the entire enterprise.[10] Inmon is one of the leading proponents of the top-down approach to data warehouse design, in which the data warehouse is designed using a normalized enterprise data model. "Atomic" data, that is, data at the lowest level of detail, are stored in the data warehouse. Dimensional data marts containing data needed for specific business processes or specific departments are created from the data warehouse. In the Inmon vision, the data warehouse is at the center of the "Corporate Information Factory" (CIF), which provides a logical framework for delivering business intelligence (BI) and business management capabilities.
Inmon states that the data warehouse is:
Subject-oriented
The data in the data warehouse is organized so that all the data elements relating to the same real-world event or object are linked together.
Non-volatile
Data in the data warehouse are never over-written or deleted — once committed, the data are static, read-only, and retained for future reporting.
Integrated
The data warehouse contains data from most or all of an organization's operational systems and these data are made consistent.
Time-variant
For An operational system, the stored data contains the current value. The data warehouse, however, contains the history of data values.
The top-down design methodology generates highly consistent dimensional views of data across data marts since all data marts are loaded from the centralized repository. Top-down design has also proven to be robust against business changes. Generating new dimensional data marts against the data stored in the data warehouse is a relatively simple task. The main disadvantage to the top-down methodology is that it represents a very large project with a very broad scope. The up-front cost for implementing a data warehouse using the top-down methodology is significant, and the duration of time from the start of project to the point that end users experience initial benefits can be substantial. In addition, the top-down methodology can be inflexible and unresponsive to changing departmental needs during the implementation phases.[10]

Hybrid design

Data warehouse (DW) solutions often resemble the hub and spokes architecture. Legacy systems feeding the DW/BI solution often include customer relationship management (CRM) and enterprise resource planning solutions (ERP), generating large amounts of data. To consolidate these various data models, and facilitate the extract transform load (ETL) process, DW solutions often make use of an operational data store (ODS). The information from the ODS is then parsed into the actual DW. To reduce data redundancy, larger systems will often store the data in a normalized way. Data marts for specific reports can then be built on top of the DW solution.
It is important to note that the DW database in a hybrid solution is kept on third normal form to eliminate data redundancy. A normal relational database however, is not efficient for business intelligence reports where dimensional modelling is prevalent. Small data marts can shop for data from the consolidated warehouse and use the filtered, specific data for the fact tables and dimensions required. The DW effectively provides a single source of information from which the data marts can read, creating a highly flexible solution from a BI point of view. The hybrid architecture allows a DW to be replaced with a master data management solution where operational, not static information could reside.
The Data Vault Modeling components follow hub and spokes architecture. This modeling style is a hybrid design, consisting of the best practices from both 3rd normal form and star schema. The Data Vault model is not a true 3rd normal form, and breaks some of the rules that 3NF dictates be followed. It is however, a top-down architecture with a bottom up design. The Data Vault model is geared to be strictly a data warehouse. It is not geared to be end-user accessible, which when built, still requires the use of a data mart or star schema based release area for business purposes.

Data warehouses versus operational systems

Operational systems are optimized for preservation of data integrity and speed of recording of business transactions through use of database normalization and an entity-relationship model. Operational system designers generally follow the Codd rules of database normalization in order to ensure data integrity. Codd defined five increasingly stringent rules of normalization. Fully normalized database designs (that is, those satisfying all five Codd rules) often result in information from a business transaction being stored in dozens to hundreds of tables. Relational databases are efficient at managing the relationships between these tables. The databases have very fast insert/update performance because only a small amount of data in those tables is affected each time a transaction is processed. Finally, in order to improve performance, older data are usually periodically purged from operational systems.

Confirmed Dimensions, Junk Dimensions, and Degenerated Dimensions 
  Conformed Dimensions (CD): these dimensions are something that is built once in your model and can be reused multiple times with different fact tables.   For example, consider a model containing multiple fact tables, representing different data marts.  Now look for a dimension that is common to these facts tables.  In this example let’s consider that the product dimension is common and hence can be reused by creating short cuts and joining the different fact tables.Some of the examples are time dimension, customer dimensions, product dimension. §         
Junked Dimensions (JD):  When you consolidate lots of small dimensions and instead of having 100s of small dimensions, that will have few records in them, cluttering your database with these mini ‘identifier’ tables, all records from all these small dimension tables are loaded into ONE dimension table and we call this dimension table Junk dimension table.  (Since we are storing all the junk in this one table) For example: a company might have handful of manufacture plants, handful of order types, and so on, so forth, and we can consolidate them in one dimension table called junked dimension table. 
 Degenerated Dimension (DD):  An item that is in the fact table but is stripped off of its description, because the description belongs in dimension table, is referred to as Degenerated Dimension.  Since it looks like dimension, but is really in fact table and has been degenerated of its description, hence is called degenerated dimension. Now coming to the slowly changing dimensions (SCD) and Slowly Growing Dimensions (SGD):  I would like to classify them to be more of an attributes of dimensions its self.   
Although other might disagree to this view but Slowly Changing Dimensions are basically those dimensions whose key value will remain static but description might change over the period of time.  For example, the product id in a companies, product line might remain the same, but the description might change from time to time, hence, product dimension is called slowly changing dimension.  
 Lets consider a customer dimension, which will have a unique customer id but the customer name (company name) might change periodically due to buy out / acquisitions, Hence, slowly changing dimension, as customer number is static but customer name is changing,  However, on the other hand the company will add more customers to its existing list of customers and it is highly unlikely that the company will acquire astronomical number of customer over night (wouldn’t the company CEO love that) hence, the customer dimension is both a Slowly changing as well as slowly growing dimension


Source: Wikipedia.

Sunday, 10 May 2009

Neeraj Nathani SmartBridge Trading Solutions Pvt Ltd

(Neeraj Nathani SmartBridge Trading Solutions Pvt Ltd)


ETL TOOLS USED IN BUSINESS INTELLIGENCE & DATAWAREHOUSING PROJECTS.
EXTRACT
The first part of an ETL process involves extracting the data from the source systems. In many cases this is the most challenging aspect of ETL, since extracting data correctly sets the stage for how subsequent processes go further.
Most data warehousing projects consolidate data from different source systems. Each separate system may also use a different data organization/format. Common data source formats are relational databases and flat files, but may include non-relational database structures such as Information Management System (IMS) or other data structures such as Virtual Storage Access Method (VSAM) or Indexed Sequential Access Method (ISAM), or even fetching from outside sources such as through web spidering or screen-scraping. The streaming of the extracted data source and load on-the-fly to the destination database is another way of performing ETL when no intermediate data storage is required. In general, the goal of the extraction phase is to convert the data into a single format which is appropriate for transformation processing.
An intrinsic part of the extraction involves the parsing of extracted data, resulting in a check if the data meets an expected pattern or structure. If not, the data may be rejected entirely or in part

Transform

The transform stage applies a series of rules or functions to the extracted data from the source to derive the data for loading into the end target. Some data sources will require very little or even no manipulation of data. In other cases, one or more of the following transformation types may be required to meet the business and technical needs of the target database:
  • Selecting only certain columns to load (or selecting null columns not to load). For example, if the source data has three columns (also called attributes), for example roll_no, age, and salary, then the extraction may take only roll_no and salary. Similarly, the extraction mechanism may ignore all those records where salary is not present (salary = null).
  • Translating coded values (e.g., if the source system stores 1 for male and 2 for female, but the warehouse stores M for male and F for female)
  • Encoding free-form values (e.g., mapping "Male" to "1")
  • Deriving a new calculated value (e.g., sale_amount = qty * unit_price)
  • Sorting
  • Joining data from multiple sources (e.g., lookup, merge) and deduplicating the data
  • Aggregation (for example, rollup — summarizing multiple rows of data — total sales for each store, and for each region, etc.)
  • Generating surrogate-key values
  • Transposing or pivoting (turning multiple columns into multiple rows or vice versa)
  • Splitting a column into multiple columns (e.g., converting a comma-separated list, specified as a string in one column, into individual values in different columns)
  • Disaggregation of repeating columns into a separate detail table (e.g., moving a series of addresses in one record into single addresses in a set of records in a linked address table)
  • Lookup and validate the relevant data from tables or referential files for slowly changing dimensions.
  • Applying any form of simple or complex data validation. If validation fails, it may result in a full, partial or no rejection of the data, and thus none, some or all the data is handed over to the next step, depending on the rule design and exception handling. Many of the above transformations may result in exceptions, for example, when a code translation parses an unknown code in the extracted data.

Load

The load phase loads the data into the end target, usually the data warehouse (DW). Depending on the requirements of the organization, this process varies widely. Some data warehouses may overwrite existing information with cumulative information, frequently updating extract data is done on daily, weekly or monthly basis. Other DW (or even other parts of the same DW) may add new data in a historical form, for example, hourly. To understand this, consider a DW that is required to maintain sales records of the last year. Then, the DW will overwrite any data that is older than a year with newer data. However, the entry of data for any one year window will be made in a historical manner. The timing and scope to replace or append are strategic design choices dependent on the time available and the business needs. More complex systems can maintain a history and audit trail of all changes to the data loaded in the DW.
As the load phase interacts with a database, the constraints defined in the database schema — as well as in triggers activated upon data load — apply (for example, uniqueness, referential integrity, mandatory fields), which also contribute to the overall data quality performance of the ETL process.
  • For example, a financial institution might have information on a customer in several departments and each department might have that customer's information listed in a different way. The membership department might list the customer by name, whereas the accounting department might list the customer by number. ETL can bundle all this data and consolidate it into a uniform presentation, such as for storing in a database or data warehouse.
  • Another way that companies use ETL is to move information to another application permanently. For instance, the new application might use another database vendor and most likely a very different database schema. ETL can be used to transform the data into a format suitable for the new application to use.

BELOW ARE THE TOOLS USED:

A
B
D
E



I
L
M
O
P
S
T


















Source: Wikipedia.


Sunday, 3 May 2009

FMCG Market Neeraj-Nathani SmartBridge



                                                                FMCG Market
Fast-moving consumer goods (FMCG) or consumer packaged goods (CPG) are products that are sold quickly and at relatively low cost. Examples include non-durable goods such as soft drinks, toiletries, and grocery items.[1][2] Though the absolute profit made on FMCG products is relatively small, they are generally sold in large quantities, and so the cumulative profit on such products can be substantial.
Fast-moving consumer electronics are a type of FMCG and are typically low priced generic or easily substitutable consumer electronics, including lower end mobile phones, MP3 players, game players, and digital cameras, which have a short usage life, typically a year or less, and as such are disposable. Cheap FMCG electronics are often retained even after immediate failure, as the purchaser rationalizes the decision to not return the goods on the basis that the goods were cheap to begin with, and that the cost of return relative to the low cost of purchase is high. Thus low-quality electronic FMCG goods can be highly profitable for the vendors.
The term FMCGs refers to those retail goods that are generally replaced or fully used up over a short period of days, weeks, or months, and within one year. This contrasts with durable goods or major appliances such as kitchen appliances, which are generally replaced over a period of several years
FMCG have a short shelf life, either as a result of high consumer demand or because the product deteriorates rapidly. Some FMCGs—such as meat, fruits and vegetables, dairy products, and baked goods—are highly perishable. Other goods such as alcohol, toiletries, pre-packaged foods, soft drinks, and cleaning products have high turnover rates. An excellent example is a newspaper—every day's newspaper carries different content, making one useless just one day later, necessitating a new purchase every day.
The following are the main characteristics of FMCGs:[1]
  • From the consumers' perspective:
    • Frequent purchase
    • Low involvement (little or no effort to choose the item – products with strong brand loyalty are exceptions to this rule)
    • Low price
  • From the marketers' angle:













Source: Wikipedia.